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Effects of time delay on symmetric two-species competition subject to noise
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Noise and time delay act simultaneously on real ecological systems. The Lotka-Volterra model of symmetric
two-species competition with noise and time delay was investigated in this paper. By means of stochastic
simulation, we find that (i) the time delay induces the densities of the two species to periodically oscillate
synchronously; (ii) the stationary probability distribution function of the two-species densities exhibits a
transition from multiple to single stability as the delay time increases; (iii) the characteristic correlation time

for the sum of the two-species densities squared exhibits a nonmonotonic behavior as a function of delay time.
Our results have the implication that the combination of noise and time delay could provide an efficient tool for

understanding real ecological systems.
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I. INTRODUCTION

The Lotka-Volterra model (LVM), originally introduced
by Volterra for the description of struggle for existence
among species [1,2], has been paid considerable attention in
many fields, such as medicine [3], biology [4], ecology
[5-9], and mathematics [10,11], etc. Its paramount contribu-
tion to biology lies in understanding the diversity of species
in the process of biological evolution, where environmental
noise plays a beneficial role [12], and the species are able to
coexist in a common environment, whether inferior or supe-
rior in terms of competitiveness. In ecosystems, noise,
through its interaction with the nonlinear ecosystem, can in-
duce many novel phenomena such as stochastic resonance
[13,14], noise-delayed extinction [15], and spatial patterns
[13,14,16]. In chaotic systems, noise can enhance phase syn-
chronization [17,18] and induce coherence resonance [19].
Less effort, however, has been devoted to the study of syn-
chronization and coherence resonance occurring in ecosys-
tems.

In realistic systems, however, inclusion of time delay is
natural. Several authors have investigated the effects of time
delay, and have found resulting dynamic phenomena such as
multistability [20-22], desynchronization [21,22], clustering
[20], amplitude death [23,24], anticipated synchronization
[25-27], and slow switching [28]. It was recently found that
noise and delay can actually be an integral part of biological
information processing [29-31]. In the field of pure statisti-
cal physics, systems with noise and time delay have been
investigated in detail [32-37]. We have studied the effects of
time delay on a mutualism system and found that the com-
bination of the noise and the time delay completely sup-
presses its population explosion [38]. In competitive systems
in the ecological field, the effects of time delay combined
with noise is not fully understood yet.

In this paper, based on the research work of Vilar and Solé
[13], we further investigate the effects of including time de-
lay into the LVM of symmetric two-species competition. In
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Sec. II, the time evolution of population densities, the sta-
tionary probability distribution function, and the characteris-
tic correlation time of the system with time delay are simu-
lated. In Sec. III, conclusions are drawn.

II. THE STATISTICAL PROPERTIES OF SYMMETRIC
TWO-SPECIES COMPETITION WITH
TIME DELAY

A. The time evolution of population densities with time delay

The time evolution of symmetric two-species competition
is obtained within the formalism of the Lotka-Volterra equa-
tions [39] in the presence of multiplicative noise [9,40]. On
the basis of Ref. [13], according to Refs. [40,41], and intro-
ducing a time delay into the LVM of the symmetric two-
species competition, one obtains the following equations:

d;;(tt) = ux(O[1 = x(t—7) = Byt — D] +x() &), (1)
%? =yl - y(t = 7) - BO)x(t = D]+ y(D&0). (2)

where x and y denote the population densities, w is their
growth rate, B(¢) represents the interaction parameter be-
tween two species, 7is the delay time, and &(¢) is Gaussian
white noise with zero mean and correlation function
(&0E(t')=0d(t—1")5; (i,j=x,y); here o denotes the
strength of the multiplicative noise &(7). x(1)&.(r) and
y(#)€,(r) express the contributions of random forces due to
external environmental fluctuation. Here the contribution of
internal fluctuation in the system is neglected. 7=0 means
that all the members of the species survive to the same age,
and the egg is instantaneously converted into an adult. In this
model, it is assumed that the birth rate coefficient is dimin-
ished by the population of the preceding generation, 7 being
the generation time (the time required in going from an egg
stage to the adult stage) [40]. The interaction parameter B(r)
is affected by geological factors. Analysis of the experimen-
tal data of planktonic foraminifera by Caruso and Gargano
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FIG. 1. Time evolution of two populations at different levels of multiplicative noise and different delay times. One is represented by a
dotted and the other by a solid line. The values of parameters are u=1, y=0.1, and wy/(27)=1073. The strength of the additive noise is fixed
at the value o3=1.78 X 1073, The initial values are 8(0)=0.94, x(0)=y(0)=1, and x(t—)=y(r—7) =1 as <, with time step 0.001.

[42] indicated that geological events produce “time win-
dows” characterized by quasiperiodic fluctuations with al-
most constant noise intensity. Therefore, the dynamics of 8
is determined by an environmental noise and a periodic driv-
ing force [14],

PB_ %+  cos(awnt) + £5(0). 3)
where U(B) is a bistable potential
UB) =hB-1+p)1 5" =20B-(1+p V7 (4)

here & is the height of the potential barrier, &4(7) is the
Gaussian white noise with the usual statistical properties
(€5(1))=0 and (&45(1)é4(t"))=0gd(t~1"), where o denotes the
strength of additive noise §B(t). The parameters h=6.25
X 1073, 5=0.05, p=—0.01, y=0.1, and wy/(27)=10"3 are
the same as those in Ref. [14].

The analytical expressions for x and y are difficult to ob-
tain. But Egs. (1) and (2) can be stochastically simulated by
means of Euler arithmetic with a time step (Ar=0.001) [43],
where the Box-Mueller algorithm is used to generate Gauss-
ian noise from two random numbers which are uniformly
distributed on the unit interval [44]. For the initial values in
the condition of time delay, it is rational to let x(1—7)=y(¢
—-7)=x(0)=y(0) as t< 7.

The results of the simulations of x and y at different levels
of multiplicative noise and different delay times are plotted
in Fig. 1. From Fig. 1, one can see that the delay time
strongly affects the time series of species. A pronounced fea-
ture is that the time delay induces periodically synchronized

oscillations of the population densities, which lead to the
reduction of the total number of species (extinction of some
species); however, there this feature does not occur in sym-
metric two-species competition without time delay, where
the total number of species is basically conservative or re-
mains near its equilibrium value at a small level of multipli-
cative noise [13].

In the process of simulation, we found that the effects of
time delay on the time series of the species densities become
obvious when 7 is greater than about 1.5. For the case of o
=0, i.e., there is no noise in the system, the time delay brings
about the Hopf bifurcation of x and y due to their sinusoidal
oscillations; what is more, their amplitude increases with de-
lay time. The critical value 7, of bifurcation equals about 1.5.
When the delay time is greater than 7., a stable limit cycle

. . dx dy
appears in the phase diagram of x versus ;; (or y versus ),
i.e., the topological properties of the solutions of Egs. (1) and
(2) exhibit a transition, or the structure of the system be-
comes unstable. For the case of o=1079, i.e., there is noise in
the system, the time coherence of x and y because of the
competition without time delay is seriously disturbed by the
time-delay-induced oscillations, which are very likely to af-
fect to some degree the stochastic resonance corresponding
to (x—y)2. However, at a higher level of multiplicative noise
(e.g., o= 107"), the time series of x and y become more regu-
lar in the presence of time delay, and the disorder introduced
by noise is replaced by delay oscillations.

In Fig. 1 there are simultaneously two types of spikelike
behavior. One is the time coherence caused by noise, which
exhibits a stochastic resonance corresponding to the periodic
signal in Eq. (3). The other is the synchronous oscillation
caused by the time delay, whose period is not equal to that of
the signal in Eq. (3) and depends on intrinsic characteristics
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of the system. The first type was investigated in Refs.
[13,14]. The second one will be addressed in Sec. II C.

B. Stationary probability distribution function
with time delay

Recently, the one-dimension Langevin equation with time
delay was investigated [33,45]. However, its exact solution is
so difficult to find that one has to search for another ap-
proach, e.g., perturbation theory in the condition of small
delay time, to get the stationary probability distribution func-
tion (SPDF) of the dynamic variable. As mentioned above,
only when the delay time is greater than about 1.5 does the
time delay effect in the system become obvious. Therefore,
the small delay time approximation is not suitable for this
system. Stochastic simulation is likely to be a more desirable
approach to deal with it. By the same method used in simu-
lating the results of Fig. 1, large numbers of x and y data for
long time evolution will be obtained. By using the statistics
of the number ratios of data belonging to different value
zones of the variables and normalizing them, we can get the
SPDF of x and y at different levels of multiplicative noise
and different delay times. The simulation results are shown
in Figs. 2 and 3.

For the case of 7=0 and the lower level of noise o
=107%, there is a three-peak structure in the SPDF, the middle
peak corresponding to coexistence and the other two peaks
corresponding to exclusion [see Fig. 2(a)]. For the case of
7=1.6 and o=107°, each of the peaks for the case of 7=0 is
split into two peaks along the line x+y=1 [see Fig. 2(b)]. For
the case of 7=2 and o=107°, the peaks away from the origin
disappear and another peak gradually shifts to the origin [see
Fig. 2(c)]. That is, the structure of the SPDF exhibits the
transitions three peaks — six peaks— one peak as the delay
time increases at the lower level of noise.

For the case of 7=0 and the higher level of noise o
=107", there is a two-peak structure in the SPDF, two peaks
corresponding to exclusion [see Fig. 3(a)]. For the case of
7=1.6 and 0=107", the peak of the coexistence appears and
there is a three-peak structure in the SPDF [see Fig. 3(b)].
For the case of 7=2, only one coexistence peak is left at the
origin [see Fig. 3(c)]. That is, the structure of the SPDF
exhibits the transitions two peaks — three peaks— one peak
as the delay time increases at the higher level of noise,
namely, the time delay induces a first-order-like transition in
the system.

C. The characteristic correlation time as a function
of delay time

The state variable autocorrelation function is an important
quantity to measure the ordering of a time series; it is defined
as

(@it + 1))

@)
where 7’ is the autocorrelation time, u(¢) is the state variable
considered, #(7)=u(r)—(u(z)), and (u(r)) is the statistical av-
erage of u(r) over time. C describes the fluctuation decay of

C(7)= (5)
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FIG. 2. Stationary probability distribution function (PDF) as a
function of x and y at lower level of multiplicative noise o=107°,
for different delay times: 7= (a) 0, (b) 1.6, and (c) 2. The other
parameter values are the same as in Fig. 1.

a dynamical variable () in the stationary state. At certain
levels of noise and delay time, the autocorrelation function
generally displays two types of motion with autocorrelation
times: overdamped and underdamped motions. The under-
damped motion may have better correlation than the over-
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FIG. 3. Stationary PDF as a function of x and y at higher level
of multiplicative noise o=10"!, for different delay times: 7
= (a) 0, (b) 1.6, and (c) 2. The other parameter values are the same
as in Fig. 1.

damped one for the same dynamic variable. Quantitatively,
the integral [46]

A= Jw C2(t)dt (6)
0

can reflect the correlation, where A is termed the character-
istic correlation time of the dynamic variable u(r). The larger
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FIG. 4. Autocorrelation function C of (x+ y)2 as a function of
correlation time at o=10"" and different delay times. The other
parameter values are the same as in Fig. 1.

the characteristic correlation time, the more pronounced the
correlation, and the more orderly the time series.

In Ref. [47], Pikovsky and Kurths used this method to
study the coherence resonance in an excitable Fitz Hugh-
Nagumo system under external noisy driving, and demon-
strated that for a certain noise amplitude the noise-excited
oscillation appears to be rather regular, and its characteristic
correlation time has a maximum. For the two-species com-
petition system, although there is not an optimal noise am-
plitude at which A has a maximum, we found that the A of
(x+y)? exhibits nonmonotonic behavior with respect to delay
time. Thus, we let the dynamic variable of Eq. (5) take the
form

ut+ 7 =[x(t+7+y(t+n7T (7)

in the case of time delay, where 7 is the delay time.

By means of Egs. (1), (2), (5), and (7), we simulated the
normalized autocorrelation function C and the characteristic
correlation time A of [x(t+7)+y(t+7]* at fixed levels of
multiplicative and additive noise, and the results are plotted
in Figs. 4 and 5, respectively. Figure 4 indicates that (i) with
no time delay or large delay time, C shows an overdamped
motion with autocorrelation time, and decays quickly to
zero; (i) with a medium delay time, i.e., 7=1.6, C shows an
underdamped motion with slow decay. Therefore, at fixed
levels of multiplicative and additive noise, there may be an
optimal delay time which makes the time series of (x+y)?
the most regular. This can be confirmed by the nonmonotonic
behavior of the characteristic correlation time as a function
of delay time (see Fig. 5). For a certain delay time, A has a
maximum, which means that a coherence resonance with re-
spect to delay time occurs in the system. The maximum de-
pends on the multiplicative noise intensity, and the lower the
multiplicative noise intensity, the greater the maximum. If
there is a correlation between &,(7) and &,(), the value of A
will increase to some degree. For an effective delay time,
however, A increases with decreasing o because the very
regular oscillation of 7=0 is gradually spoiled by increasing
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FIG. 5. Characteristic correlation time A vs delay time at the
levels of noise: o=1072 for (a) and 107! for (b). The other param-
eter values are the same as in Fig. 1.

o. Yet noise can enhance the antiphase synchronization of x
and y below the threshold of the delay time (see Fig. 1). A
similar circumstance also appears in Ref. [48].

III. CONCLUSIONS

In this paper, we studied the effects of time delay on
symmetric two-species competition subjected to noise. By
means of stochastic simulations, the time evolution of popu-
lation densities, the two-dimensional SPDF, and the charac-
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teristic correlation time with the delay time are calculated.
The results indicate that the time delay causes the noise-
induced competition system to exhibit many peculiar charac-
teristics. First, the time delay effect starts to become more
and more obvious as 7 becomes greater than about 1.5. Sec-
ond, the time delay induces the species densities to synchro-
nously periodically oscillate with time, which causes a tran-
sition of the system’s structure, i.e., symmetry breaking.
Third, the stationary probability distribution function of the
two-species densities exhibits a transition from multiple to
single stability as the delay time increases. Finally, the char-
acteristic correlation time of (x+y)? displays a nonmonotonic
behavior with respect to delay time.

From the above findings, we can obtain further under-
standing of the intrinsic properties in the system. It is gener-
ally known that when the generation time (or delay time) is
close to infinity, i.e., the reproducibility of species is com-
pletely lost, the species will go to extinction ultimately. But
at some delay times the system possesses a stable state with
higher species density. This makes a large contribution to
sustaining ecological equilibrium. In addition, the oscilla-
tions of x and y caused by the time delay are strictly syn-
chronous, unlike the oscillations caused by the noise. At an
optimal delay time, the system exhibits a coherence reso-
nance.
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